
Dedukti 3 proof-mode with unification goals

Rehan Malak
j.w.w. Bruno Barras, Frédéric Blanqui,

LSV, ENS Paris-Saclay

9 November 2020

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

1 Introduction
Why proving ? What do we want to prove ?
Dependent Type theory
λΠ-calculus modulo rewriting

2 From a type-checker to a proof-assistant
Inference, unification, tactics

3 An example of formalization
A library for presheaf models of type theory

4 Unification goals implementation in Dedukti 3
Language Server Protocol (LSP)
Ocaml implementation

5 Conclusion

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

1) Introduction

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Why proving ? What do we want to prove ?
proof obligations from certified software

⇒ one way to ensure there is no bug (unit-testing not sufficient)
⇒ embedded OS in medical devices, power plant, aerospace

engineering, . . .
pure mathematics

⇒ Kepler conjecture, 4-color theorem, Feit-Thompson odd-order
group theorem

⇒ Kapranov-Voevodsky (1991. . . 2013) error
⇒ Mochizuki’s proof (2012) of ABC Conjecture published this

year but is considered as flawed by the majority of the
mathematical community

Homotopy Type Theory book (2013) :

Imagine a not-too-distant future when it will be possible for
mathematicians to verify the correctness of their own papers [. . .],

formalized in a proof assistant.

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Why proving ? What do we want to prove ?
proof obligations from certified software

⇒ one way to ensure there is no bug (unit-testing not sufficient)
⇒ embedded OS in medical devices, power plant, aerospace

engineering, . . .
pure mathematics

⇒ Kepler conjecture, 4-color theorem, Feit-Thompson odd-order
group theorem

⇒ Kapranov-Voevodsky (1991. . . 2013) error
⇒ Mochizuki’s proof (2012) of ABC Conjecture published this

year but is considered as flawed by the majority of the
mathematical community

Homotopy Type Theory book (2013) :

Imagine a not-too-distant future when it will be possible for
mathematicians to verify the correctness of their own papers [. . .],

formalized in a proof assistant.

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Why proving ? What do we want to prove ?
proof obligations from certified software

⇒ one way to ensure there is no bug (unit-testing not sufficient)
⇒ embedded OS in medical devices, power plant, aerospace

engineering, . . .
pure mathematics

⇒ Kepler conjecture, 4-color theorem, Feit-Thompson odd-order
group theorem

⇒ Kapranov-Voevodsky (1991. . . 2013) error
⇒ Mochizuki’s proof (2012) of ABC Conjecture published this

year but is considered as flawed by the majority of the
mathematical community

Homotopy Type Theory book (2013) :

Imagine a not-too-distant future when it will be possible for
mathematicians to verify the correctness of their own papers [. . .],

formalized in a proof assistant.

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Type theory in brief :
notion of type is primitive, no preexistence of objects without
a type, no heterogeneous collections
functions are given explicitly f : A → B defined by f (x) := b
with b : B, one can compute f (a) ↪→ b[a/x] if a : A
type theory is its own deductive system (no need of two layers
as in set theoretic foundations with propositions + sets in first
order logic)

⇒ rigid constructions well suited for computers

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Type theory in brief :
notion of type is primitive, no preexistence of objects without
a type, no heterogeneous collections
functions are given explicitly f : A → B defined by f (x) := b
with b : B, one can compute f (a) ↪→ b[a/x] if a : A
type theory is its own deductive system (no need of two layers
as in set theoretic foundations with propositions + sets in first
order logic)

⇒ rigid constructions well suited for computers

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Curry-Howard correspondence in brief :
propositions as types and proofs as terms (of this type)

⇒ proving a proposition = constructing an element (of this type)

Type formation captures logical operation :

Types Logic Sets interpretation
A propositon set
a : A proof element
B(x) predicate family of sets
b(x) : B(x) conditional proof family of elements
A → B =

∏
x :A B A ⇒ B set of functions∏

x :A B(x) ∀x :AB(x) product

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Barendregt cube :

modulo rewriting

coqocaml

Three directions :
values depending on types (polymorphic) ⇒ λ2 = System F
types depending on types (type operators) ⇒ λω

types depending on values ⇒ λΠ = Logical Framework
⇒ can re-encode first-order logic

With the dependent functions of λΠ :
express concatenation of vectors with specified sizes
concat : Vector n → Vector m → Vector (n + m)

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

λΠ-terms inductive definition :

t, u ::= TYPE |KIND|x |f |tu|λx : t, u|Πx : t, u

λΠ-calculus modulo rewriting extends λΠ :

⇒ define function and type symbols with rewriting rules

In particular :

ExtendedConversionRule
Γ ⊢ a : A A ≡βΓ B

Γ ⊢ b : B

Vector(2 + 2) ≡βΓ Vector 4
⇒ strict equality
not a proposition to prove !

⇒ ≡βΓ is the reflexive symmetric transitive closure of →β or Γ

⇒ constrain rules so that type checking remains decidable
⇒ confluence and termination can be checked by external tools

at the meta-theory level

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

λΠ-calculus modulo rewriting has advantages on other systems :
simpler
powerful enough to encode and check proofs developed in
other systems : Coq, HOL Light, . . .

Interoperability :
natural choice to translate one proof from a system to another
building proofs assembling lemmas developed in different
systems
“universal” encyclopedia of mathematical theorems

⇒ Dedukti 2 is an implementation of the type-checker and
comes with the translation tools

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

2) From a type-checker to a proof-assistant

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Why not using directly this framework to formalize mathematics ?

Dedukti 2 Dedukti 3
Type-checker Proof-assistant

type inference : type a YES YES
type check : assert a:A YES YES
evaluate : compute a YES YES
equality check : assert a=b YES YES
build incrementally : ?a : A NO YES
equality on holes : a =? b NO YES
some degree of automation NO YES

⇒ meta-variables for “inhabitation goals”, tactics
⇒ “conversion goals” or “unification goals”, tactics

This work :
⇒ use Dedukti 3 to formalize (categorical) models of type theory
⇒ add unification goals alongside the usual inhabitation goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

3) An example of formalization

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Model theory in general :
≃“theory of relations between theories”
prove coherence, independence of a particular axiom, . . .
interpretation of a language (eg. : geometrical interpretation)

Model of intensional dependent type theory :
identity types (propositional equality) are not trivial

⇒ inhabited by terms behaving as path in homotopy theory
⇒ simplicial sets ∆̂ := ∆op → Set where the objects of ∆ are

[n] := {0, . . . , n} and the morphisms are the order-preserving
maps

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Extensional set theory vs intensional type theory :
models usually relying on set-theoretic foundations
interesting to interpret directly in type theory (“HoTT
univalent foundations”)
simplicial sets are difficult to formalize in intensional type
theory because of the coherence conditions

Dedukti can help :
⇒ λΠ-modulo-rewriting provides a decidable strict equality

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

The formalization of semi-simplicial sets has then been turned into
a model of a non-dependent type theory : System F.
⇒ Types2020 Book of Abstracts

To reach the formalization of a full intensional dependent type
theory :

category with families
semi-simplicial sets ⇝ simplicial-sets ⇝ Kan simplicial-sets

This has been tried by B.Barras on Dedukti 2 :
⇒ turned out to be impractical without a real proof-assistant

and “holes” development
⇒ one really needs interactivity with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

4) Unification goals implementation in Dedukti 3

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Language Server Protocol (LSP) :
⇒ resolves the “matrix problem” between programming languages

and Integrated Development Environment (IDE).
Instead of :

No LSP LSP
M IDE’s & N languages M x N plugins M + N plugins
user stays in his/her favorite IDE
language designer focuses on the server side
IDE designer focuses on the client side
they can talk to each other via a standardized protocol, (here)
via textual JSON documents

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Unification can fail if :
the user made a mistake and the type is not well formed
the default unification algorithm fails

Solution :
no need for a proof script if unification + typing are OK
if not, don’t fail immediately and let the user interact

⇒ interactive mode with inhabitation + unification goals
⇒ interactive mode for theorems + symbol declarations

(unification can fail even if there is no inhabitation goals)
⇒ new tactics

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

5) Conclusion

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

To sum up :
Dedukti is a natural choice for interoperability :

λΠ-calculus modulo rewriting as a logical framework is
powerful
can export a proof from a system to another

Dedukti 3 :
proof-assistant with tactics suitable for proof developments
gradually improving the user interface
Emacs and VSCode IDE’s using state-of-the-art LSP protocol

This work made contributions to :
a library formalizing the category of semi-simplicial sets and a
model of a non-dependent type theory
(System F)

⇒ exposed in Types2020 book of abstracts
make the possibility for the user to manipulate unification goals

Work in progress :
⇒ investigate formalization of a model of dependent type theory
⇒ unification goals ⇝ unification tactics (≃ pieces of the

unification algorithm)
Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

	Introduction
	Why proving ? What do we want to prove ?
	Dependent Type theory
	-calculus modulo rewriting

	From a type-checker to a proof-assistant
	Inference, unification, tactics

	An example of formalization
	A library for presheaf models of type theory

	Unification goals implementation in Dedukti 3
	Language Server Protocol (LSP)
	Ocaml implementation

	Conclusion

