Dedukti 3 proof-mode with unification goals

Rehan Malak
j-w.w. Bruno Barras, Frédéric Blanqui, e

LSV, ENS Paris-Saclay

9 November 2020

école———
normale
supérieure
paris—saclay——

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

© Introduction
@ Why proving ? What do we want to prove ?
@ Dependent Type theory
@ All-calculus modulo rewriting

© From a type-checker to a proof-assistant
@ Inference, unification, tactics

© An example of formalization
@ A library for presheaf models of type theory

@ Unification goals implementation in Dedukti 3
o Language Server Protocol (LSP)
@ Ocaml implementation

© Conclusion

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

1) Introduction

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Why proving ? What do we want to prove ?

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Why proving ? What do we want to prove ?
@ proof obligations from certified software

= one way to ensure there is no bug (unit-testing not sufficient)
= embedded OS in medical devices, power plant, aerospace
engineering, ...

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Why proving ? What do we want to prove ?
@ proof obligations from certified software

= one way to ensure there is no bug (unit-testing not sufficient)

= embedded OS in medical devices, power plant, aerospace
engineering, ...

@ pure mathematics

= Kepler conjecture, 4-color theorem, Feit-Thompson odd-order
group theorem

= Kapranov-Voevodsky (1991...2013) error

= Mochizuki's proof (2012) of ABC Conjecture published this
year but is considered as flawed by the majority of the
mathematical community

Homotopy Type Theory book (2013) :

Imagine a not-too-distant future when it will be possible for
mathematicians to verify the correctness of their own papers [...],
formalized in a proof assistant.

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Type theory in brief :

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Type theory in brief :

@ notion of type is primitive, no preexistence of objects without
a type, no heterogeneous collections

e functions are given explicitly f : A — B defined by f(x) := b
with b : B, one can compute f(a) < b[a/x] if a: A

@ type theory is its own deductive system (no need of two layers
as in set theoretic foundations with propositions + sets in first
order logic)

= rigid constructions well suited for computers

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Curry-Howard correspondence in brief :

@ propositions as types and proofs as terms (of this type)

= proving a proposition = constructing an element (of this type)

Type formation captures logical operation :

Types Logic Sets interpretation
A propositon set

a:A proof element

B(x predicate family of sets
b(x) : B(x) conditional proof | family of elements
A—=B=1][.4B A= B set of functions
[1e.4 B(x) Vy:aB(x) product

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Barendregt cube :

AW ——————————>AI2W

ocaml ¢ / / coq

A2 A2

Aw Alw

/ / AT modulo rewriting

| |

Three directions :
@ values depending on types (polymorphic) = A2 = System F
@ types depending on types (type operators) = \w
@ types depending on values = All = Logical Framework
= can re-encode first-order logic

With the dependent functions of Al :

@ express concatenation of vectors with specified sizes
concat : Vector n — Vector m — Vector (n+ m)

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

A -terms inductive definition :

t,u = TYPE|KIND|x|f|tulAx : t,u|lx : t,u

Al-calculus modulo rewriting extends Al :

= define function and type symbols with rewriting rules

In particular :

ExTENDEDCONVERSIONRULE ~ Vector(2 +2) =gr Vector 4

rFa:A A=y B = strict equality
r'-h:B not a proposition to prove !
= =gr is the reflexive symmetric transitive closure of =3 o

4

constrain rules so that type checking remains decidable

Y

confluence and termination can be checked by external tools
at the meta-theory level

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Al-calculus modulo rewriting has advantages on other systems :
@ simpler
@ powerful enough to encode and check proofs developed in
other systems : Coq, HOL Light, ...
Interoperability :
@ natural choice to translate one proof from a system to another
@ building proofs assembling lemmas developed in different
systems
@ “universal” encyclopedia of mathematical theorems

= Dedukti 2 is an implementation of the type-checker and
comes with the translation tools

Logipedia

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

2) From a type-checker to a proof-assistant

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Why not using directly this framework to formalize mathematics ?

Dedukti 2 Dedukti 3
Type-checker | Proof-assistant
type inference : type a YES YES
type check : assert a:A YES YES
evaluate : compute a YES YES
equality check : assert a=b YES YES
build incrementally : 7a : A NO YES
equality on holes : a=7 b NO YES
some degree of automation NO YES

= meta-variables for “inhabitation goals”, tactics
= “conversion goals” or “unification goals”, tactics

This work :
= use Dedukti 3 to formalize (categorical) models of type theory
=- add unification goals alongside the usual inhabitation goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

3) An example of formalization

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Model theory in general :
@ ~"theory of relations between theories”
@ prove coherence, independence of a particular axiom, ...
@ interpretation of a language (eg. : geometrical interpretation)
Model of intensional dependent type theory :
@ identity types (propositional equality) are not trivial
= inhabited by terms behaving as path in homotopy theory

— simplicial sets A := A°P — Set where the objects of A are
[n] :== {0, ..., n} and the morphisms are the order-preserving
maps

A

0 — simplex 1 — simplex 2 — simplex

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Extensional set theory vs intensional type theory :
@ models usually relying on set-theoretic foundations
@ interesting to interpret directly in type theory (“HoTT
univalent foundations")
@ simplicial sets are difficult to formalize in intensional type
theory because of the coherence conditions

01
0 9,01

0
[]
a12
312
02 01 02 0 o2
—p » 302
012 012 = 12
8,012 = 02
3,012 = 01
. 2
2

OO -

1
LI —— 12 1

2 1 1

Dedukti can help :

= All-modulo-rewriting provides a decidable strict equality

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

The formalization of semi-simplicial sets has then been turned into
a model of a non-dependent type theory : System F.

= Types2020 Book of Abstracts

To reach the formalization of a full intensional dependent type
theory :

@ category with families

@ semi-simplicial sets ~~ simplicial-sets ~~ Kan simplicial-sets

This has been tried by B.Barras on Dedukti 2 :

= turned out to be impractical without a real proof-assistant
and “holes” development

=- one really needs interactivity with unification goals

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

4) Unification goals implementation in Dedukti 3

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Language Server Protocol (LSP) :

= resolves the “matrix problem” between programming languages
and Integrated Development Environment (IDE).

Instead of :

| NolSP | LSP
|

M IDE’s & N languages | M x N plugins ‘ M + N plugins

@ user stays in his/her favorite IDE

o language designer focuses on the server side

o IDE designer focuses on the client side

@ they can talk to each other via a standardized protocol, (here)
via textual JSON documents

Development Language Server Protocol
Tool (JSON-RPC)

Notification: textDocument/didOpen; Params: document
User opens document
hange; Params: JRI, changes)
User edits document
Params: Server publishes
errors and warnings
Request: textD inition Params JRI, position}
User executes
“Goto definition” Response: textDocument/definition; Result: Location
textD idClose; Params: d tURI
User closes document

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

1// Natural numbers.

> constant symbol N : TYPE
; constant symbol z : N

s+ constant symbol s

s set builtin "0" =z

s set builtin "+1" = s

s // Addition function.

o symbol add : N - N — N

10 set infix left 6

urule z +

with (s $m) +

13 with $m +

1w with $m +

16 // Multiplication function
17 symbol mul : N - N — N

1 set infix left 7 "x" = mul
wrule z X
20 with (s $m)

z
x $n $n + $m x $n
awith _ x Z z

X

2 with $m
2 // Type of propositions and their interpretation
25 constant symbol Prop : TYPE

26 injective symbol P : Prop — TYPE

27 constant symbol eq : N — N — Prop

28 constant symbol refl : II x, P (eq x X)

(s $n) < $m + $m x $n

ALL (29,0) <N> (LambdaPi +3 Flymake[0 © 24] Undo-Tree ElDoc Abbrev) [eglot:lambdapi]

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

1// Natural numbers.
constant symbol N :
2) s constant symbol z :
// Is it true that 2 * x = x + x ??7? s constant symbol s :

.symbol my theorem : Iix, P (eq (2 x x) (X + X)) z:; Eﬁ&: 31 e

require open tests.lib

// Addition function.

symbol add : N — N — N
wset infix left 6 "+" add

rule z + $n

with (s $m) + $n < s (sm + $n)
1z with $m +z < $m

swith $m + (s $n) = s ($m + $n)

1 // Multiplication function.
symbol mul : N — N — N
set infix left 7 "x"

wrule z x
owith (s $m) x $n
with _ 4

2with $m x (s $n)

ul

+ $m x $n

m
z
S
z
|

BN
< $n
o
< $m + $m x $n
«// Type of propositions and their interpret
constant symbol Prop : TYPE
12 injective symbol P : Prop — TYPE
‘27 constant symbol eq : N — N — Prop
‘2 constant symbol refl : T x, P (eq X X)

deno.1p AL (5,0) <Vl> (LanbdaPi +5 Flynake:iait[d 6 3] Undo-Tree ElDac Abbrev) [eglot:lasbdapi] AL (29,6) < (LambdaPi +3 Flynake[d 0 24] Undo-Tre
0 for furtner adlustrent

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

require open tests.lib Natural numbers.
constant symbol N :

. constant symbol z :

// Is it true that 2 * x = x + x ??7? constant symbol s :
. . set builtin "0" =
.symbol my theorem : IIx, P (eq (2 x x) (X + X)) = .

begin
// Addition function.

assume X Uadd N \ \
symbol add : N — N —
end o set infix left 6 add
J rule z + $n
with (s $m) + $n < s ($m + $n)
with $m + 2z < $m
swith $m + (s $n) < s ($m + $n)

/ p on func
symbol mul : N - N = N

set infix left 7 "x"

rule z x

owith (s $m) x

with _ x z z

with $m x (s $n) < $m + $m x $n

deno.1p A (8,0) (LanbdaPi +5 Flynake:\ait[! 6 3] Undo-Tree ElDac Abbrev) [eglot:lasbdapi]

+// Type of propositions and their interpret
constant symbol Prop : TYPE

s injective symbol P : Prop — TYPE

constant symbol eq : N - N — Prop
constant symbol refl : 1l x, P (eq x x)

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

require open tests.lib // Natural numbers.
t 2 constant symbol N : TYPE

) ' 3 constant symbol z : N
// Is it true that 2 * x = x + x 777 s constant symbol s :
. . ! sset builtin "0"

‘symt‘)OL my_theorem : IIx, P (eq (2 x x) (x + X)) = | *200 Mo

begin

assume X // Addition function.
: ssymbol add : N = N = N

» simpl o set infix left 6 "+" = add

end nrule z +$n < $n
with (s $m) + $n < s ($m + $n)

swith $m +z < $m
1uwith $m + (s $n) = s ($m + $n)

6 // Multiplication function.

symbol mul : N » N N

sset infix left 7 "x" = mul

s rule z X _ z

wwith (s $m) x $n < $n + $m x $n
with x z © z

with $m x (s $n) < $m + $m x $n

- deno.1p AL (7,0) i (LanbdaPi +5 Flynake:aitll O 4] Undo-Tree ELDoc Abbrev) [eglot:lanbdapil

«// Type of propositions and the
constant symbol Prop : TYPE

s injective symbol P : Prop - TYPE
constant symbol eq : N - N — Prop

28 constant symbol refl : I x, P (eq x x)

Lanbdapi +3 Flynake(6 0 24 Undo-T

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

require open tests.lib

// Is it true that 2 * x = x + x ??7?
.symbol my theorem : IIx, P (eq (2 x x) (X + X))
begin
assume x
simpl
. refine refl (add
end

- deno.lp AL (8,0) i (LanbdaPi +5 Flynake:ait[0 O 6] Undo-Tree E\Doc Abbrev) [eglot:lanbdapi]

sset builtin "+1" =

// Natural numbers

constant symbol N : TYPE

constant symbol z : N
s constant symbol s : N
set builtin "0" =

z
s

// Addition function.
symbol add :

twset infix left 6

rule z + $n
with (s $m) + $n
with $m + 2z

> s ($m + $n)

< $m

swith $m + (s $n) = s ($m + $n)

s // Multiplication fun
symbol mul : N
set infix left 7 "x
rule z x
swith (s $m) x
with x
2 with $m x

ction.

+// Type of propositions and their interpret

constant symbol Prop
5 injective symbol P :
constant symbol eq :

constant symbol refl :

: TYPE
Prop

TYPE

N — N — Prop

X,

P (eq x x)

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

require open tests.lib // Natural numbers
constant symbol
] s constant symbol
// Is it true that 3 * x = x + x 77?7 s constant symbol

‘Zzg?gl my_theorem : Tix, P (eq (3 x x) (x + x)) = |2 pulttin [0/

assume x // Addition function.
: symbol add : N 5 N 5 N
simpl set infix left 6 "+' = add
sl refine refl (add x x) rute z +sn o sn
end with (s $m) + $n o s ($m + $n)
with $m +z < $m
(with M+ (s $n) o s ($m + $n)

// Multiplication function

symbol mul : N = N = N

set infix left 7 " mul

rule z x © Z

Goal 107: P (eq (x + (x + X)) (x + x)) with (s $m) x $n < $n + $m x $n
with x z =z

with $m x (s $n) < $m + $m x $n

deno.1p AU (8,0) b (LanbdaPi +5 Flynake:ait[1 0 5] Undo-Tree Elac Abbrev) [eglot:lanbdapi]

+// Type of propositions and their interpret.
constant symbol Prop : TYPE

injective symbol P : Prop — TYPE

constant symbol eq : N — N - Prop

constant symbol refl : II x, P (eq x x)

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

Unification can fail if :
@ the user made a mistake and the type is not well formed
@ the default unification algorithm fails

Solution :
@ no need for a proof script if unification + typing are OK

if not, don't fail immediately and let the user interact

o
= interactive mode with inhabitation 4 unification goals
=

interactive mode for theorems 4+ symbol declarations
(unification can fail even if there is no inhabitation goals)

new tactics

Y

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

/ Natural "

constant symbol N : TYPE
constant symbol z :

// Is it true that 3 * x = x + x ?2?7? constant symbol s :

‘Zymt_)ol my theorem : IIx, P (eq (3 x x) (x + X)) = ;;: :i::]‘“]‘:l ‘:]
egin

require open tests.lib e

// Addition function
s symbol add : N N — N
set infix left 6 "+" = add
rule z + $n < $n
with (s $m) + $n < s ($m + $n)
with $m z < $m

with $m (s $n) < s ($m + $n)

end

+
+

/ Multiplication function
symbol mul : N N N

set infix left 7 "x" := mul
s rule z x >z
owith (s $m) x $n < $n + $m x $n

with x z oz

with $m x (s $n) < $m + $m x $n

deno.lp AUL(6,0) <> (LanbdaPL +5 Flymake:\alt[1 0 2] Undo-Tree ElDoc Abbrev) [eglot:lanbdapi]

// Type of propositions and their interpret
constant symbol Prop : TYPE

injective symbol P : Prop - TYPE

constant symbol eq : N - N — Prop
constant symbol refl : Il x, P (eq x x)

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

require open tests.lib

// Is it true that 3 * x = x + x ??7?
.symbol my theorem : IIx, P (eq (3 x x) (x + X))

begin
o] solve
end

deno.1p

AU (6,6)

(LanbdaPi +5 Flynake:\ait[1 6 3] Undo-Tree ELDoc Abbrev) ~[eglot:Lanbdapi]

Rehan Malak, Deducteam

// Natural nt

b
constant symbol N : T
constant symbol z :
constant symbol s :
set builtin "0"
set builtin "+1" :

// Addition funct

s symbol add : N —

set infix left 6
rule z + $n
with (s $m) + $n
with $m +z
with $m + (s

$n
< s ($m + $n)

< $m
$n) < s ($m + $n)

// Multiplication function

symbol mul : N N

set infix left 7 "x

s rule z x
swith (s $m) x $n

with
with $m $n)

// Type of propositic
constant symbol Prop
injective symbol P :
constant symbol eq :

constant symbol refl :

N

= mul

>z

< $n + $m x $n
© 2z

< $m + $m x $n

and their interpret
TYPE

Prop -+ TYPE

N - N — Prop

I x, P (eq x x)

Dedukti 3 proof-mode with unification goals

require open tests.lib
// Is it true that 3 * x = x + x ??7?
.symbol my theorem
begin

solve
; assume X
end

Uit deno.lp <> (LanbdaPi +5 Flynake[! 0 4] Undo-Tree E1Doc Abbrev) [eglot:lanbdapi]

X: N

Typ

A (7,0)

108: P

(eq

Rehan Malak, Deducteam

Ix, P (eq (3 x X) (X + X))

1// Natural numbers.
constant symbol N :
constant symbol z :
constant symbol s :
set builtin "0" :
set builtin "+1" =

// Addition funct

o symbol add : N — N - N
wset infix left 6

rule z +
zwith (s $m) +
s with $m +
with $m +

add
< $n
< s ($m + $n)
z < $m
(s $n) < s ($m + $n)
1 // Multiplication function
v symbol mul : N — N —
1w set infix left 7 "x" =
wrule z x <
owith (s $m) x $n <
1with _ x z <
with $m x (s $n) <

N
mul

z
$n + $m x $n
z

$m + $m x $n

// Type of propositions and their interpret.
constant symbol Prop : TYPE

injective symbol P : Prop — TYPE

constant symbol eq : N = N — Prop

constant symbol refl : IT x, P (eq x x)

Dedukti 3 proof-mode with unification goals

1// Natural numbers.
constant symbol N :
. constant symbol z :
// Is it true that 3 * x = x + x ??7? constant symbol s :

.symbol my theorem : Iix, P (eq (3 x x) (x + x)) = set puittin 007

begin
solve // Addition funct
o symbol add : N — N - N

a$sume x wset infix left 6 add

+| | simpl rule z + < $n
end 2with (s $m) + S s ($m + $n)

s with $m +2z < $m
with $m + (s $n) < s ($m + $n)

require open tests.lib

on

16 // Multiplication func

v symbol mul : N = N = N
e

1w set infix left 7 = mul
wrule z x -z
owith (s $m) x $n < $n + $m x $n
1with _ x z <z
with $m x (s $n) < $m + $m x $n
U; deno.1p ALL (8,6) <N> (LambdaPi +5 Flymake:Wait[! @ 5] Undo-Tree ElDoc Abbrev) [eglot:lambdapi]
X: N // Type of propositions and their interpret.
constant symbol Prop : TYPE
injective symbol P : Prop — TYPE
Typ 182: P (eq constant symbol eq : N = N — Prop

constant symbol refl : IT x, P (eq X X)

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

1// Natural numbers.
constant symbol N :
) constant symbol z :
// Is it true that 3 * x = x + x ??7? constant symbol s :
. o set builtin "0"
‘symt.)ol my theorem : 1ix, P (eq (3 x x) (X + X)) = cot builtin “+1° o
begin
solve
s symbol add : N - N - N
a$sume X 1 set infix left 6 add
simpl rule z + < $n
/| refine refl (add x x) wwith (s $m) + s ($m + $n)
d 1 with $m +z < $m
en with $m + (s $n) & s ($m + $n)

require open tests.lib

Addition funct

1 // Multiplication function
v symbol mul : N = N = N
wset infix left 7 "x" = mul
wrule z x -z
owith (s $m) x $n < $n + $m x $n

1with _ x z <z

with $m x (s $n) < $m + $m x $n
deno.1p AL (9,6) o (LanbdaPi 45 Flynake:Wait[! 6 6] Undo-Tree ELDoc Abbrev) [eglot:Lanbdapi]

// Type of propositions and their interpret.

constant symbol Prop : TYPE

injective symbol P : Prop — TYPE

constant symbol eq : N = N — Prop

constant symbol refl : IT x, P (eq X X)

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

5) Conclusion

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

To sum up :
@ Dedukti is a natural choice for interoperability :

o All-calculus modulo rewriting as a logical framework is
powerful
e can export a proof from a system to another

@ Dedukti 3 :

e proof-assistant with tactics suitable for proof developments
e gradually improving the user interface
o Emacs and VSCode IDE's using state-of-the-art LSP protocol

@ This work made contributions to :
o a library formalizing the category of semi-simplicial sets and a
model of a non-dependent type theory
(System F)
= exposed in Types2020 book of abstracts
o make the possibility for the user to manipulate unification goals
Work in progress :
= investigate formalization of a model of dependent type theory

= unification goals ~~ unification tactics (~ pieces of the
unification algorithm)

Rehan Malak, Deducteam Dedukti 3 proof-mode with unification goals

	Introduction
	Why proving ? What do we want to prove ?
	Dependent Type theory
	-calculus modulo rewriting

	From a type-checker to a proof-assistant
	Inference, unification, tactics

	An example of formalization
	A library for presheaf models of type theory

	Unification goals implementation in Dedukti 3
	Language Server Protocol (LSP)
	Ocaml implementation

	Conclusion

