
Real-time Linux Scheduling Latency

after S.Rostedt, D.B. Oliveira, D. Casini, R.Oliveira,
T.Cucinotta

March 2021

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



1 Real-Time
De�nition ?
Applications ?
Approaches with Linux ?
PREEMPT_RT patches
rt-tests suite and cyclictest

2 Model of IRQs, NMIs and thread synchronization mechanisms

3 Model the latency bound

4 Conclusion

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



1 ) Real-Time

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Real-Time (RT) :

is about timing behavior not performance

deterministic/predictable scheduling

∼ opposite of �batch work� on a server (think of a build server
where performance is about long-run rather than reactivity)

⇒ timing response guarantees/bounding = safety bound

⇒ predict the worst case

With Linux ? :

understanding timing behavior of linux

priority-base scheduling : high priority needs to be able to
preempt low priority

⇒ faster in worst case scenarios but slower in the average
scenarios (otherwise this would be the default kernel)

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Applications :

robotics

stock exchange

music studio recording (no �glitches� with jack low-latency
audio server)

death or life devices ?

⇒ NO ! Linux kernel too complex for formal methods ?

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Two approaches with the Linux kernel :

dual-kernel approach : RTAI, RTLinux, Xenomai Cobalt,
Xenomai Mercure

⇒ Linux becomes a task alongside high-priority RT tasks
⇒ lots of work : support new architecture, implement specific

tools/libraries (libc)
⇒ bad scaling, (wo)man power problem

in-kernel approach

⇒ maximize preemptible code sections = allow scheduling almost
everywhere

⇒ take advantage of all the tools/optimizations/industrial
support. . .

⇒ Linux too big for < 1$ chip ?
⇒ try to keep up-to-date with mainline kernel
⇒ 2021 : try to merge the patches in mainline kernel

⇒ both Linux-approaches are ∼15/20 years old

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Standard Linux preemption model con�guration :
PREEMPT_NONE, default = PREEMPT_VOLUNTARY,
PREEMPT :

With patches (new PREEMPT_RT) :

Debian binary : linux-image-amd64 ⇝ linux-image-rt-amd64
Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Make preemption enabled almost everywhere :

spinlocks ⇝ raw_spinlock + sleeping spinlocks (= rt mutex)

threaded interrupt handler

priority inheritance to avoid priority inversion = when a high
priority is blocked because of some task of lower priority

others hacks already merged in mainline kernel

⇒ HUGE collection of patches

⇒ 80% already mainlined (timers, interrupt handlers,tracing
infrastructure. . . )

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Normal interrupt preempts the task and executes the handler
function :

Threaded interrupt schedules the thread_fn function (top/bottom
half approach) :

Forced threaded interrupts just acknowledges the device (< 1 µs) :

⇒ merged in mainline since 2009
⇒ all interrupts as threads threadirqs in mainline since 2011

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Priority inversion :

Priority inheritance :

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Most of the spinlock are transformed in rt-mutexes. The others are
now called raw_spinlocks.

There are in fact needed now with the threaded IRQs !

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Usual way to tests real-time kernel behavior is to use the rt-tests
suite :

timer latency

signal latency

functionning of priority-inheritance mutexes

. . .

The main program is cyclictest :

-p,--prio=PRIO of �rst thread (default 80)

-i,--interval=INTV of �rst thread (default 1000µs)

-l,--loops=LOOPS of �rst thread (default 0=endless)

-D,--duration=TIME

-t,--threads=NUM (default 1,empty means #CPU)

-m,--mlockall lock current and future memory alloc

-a,--affinity=PROC-SET

-S,--smp = -t -a

-h,--histogram=US max latency tracked

⇒ cyclictest -D6h -m -S -p95 -i200 -h400

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



0 50 100 150 200 250 300 350 400

Latency in µs, max 647 µs

101

103

105

107

N
u

m
b

er
of

la
te

n
cy

sa
m

p
le

s

5.10.0-4-amd64

cyclictest -D6h -m -S -p 95 -i200 -h400

CPU1

CPU2

CPU3

CPU4

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



0 50 100 150 200 250 300 350 400

Latency in µs, max 2084 µs

101

103

105

107

N
u

m
b

er
of

la
te

n
cy

sa
m

p
le

s

5.10.0-4-amd64

cyclictest -D6h -m -S -p 95 -i200 -h400

CPU1

CPU2

CPU3

CPU4

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



0 50 100 150 200 250 300 350 400

Latency in µs, max 38 µs

101

103

105

107

N
u

m
b

er
of

la
te

n
cy

sa
m

p
le

s

5.10.0-4-rt-amd64

cyclictest -D6h -m -S -p 95 -i200 -h400

CPU1

CPU2

CPU3

CPU4

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



0 50 100 150 200 250 300 350 400

Latency in µs, max 35 µs

101

103

105

107

N
u

m
b

er
of

la
te

n
cy

sa
m

p
le

s

5.10.0-4-rt-amd64

cyclictest -D6h -m -S -p 95 -i200 -h400

CPU1

CPU2

CPU3

CPU4

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



0 50 100 150 200 250 300 350 400

Latency in µs, max 343 µs

100

101

102

103

104

105

106

N
u

m
b

er
of

la
te

n
cy

sa
m

p
le

s

5.10.0-4-amd64

cyclictest -D10m -m -S -p 95 -i200 -h400

CPU1

CPU2

CPU3

CPU4

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



0 50 100 150 200 250 300 350 400

Latency in µs, max 3187 µs

100

101

102

103

104

105

106

N
u

m
b

er
of

la
te

n
cy

sa
m

p
le

s

5.10.0-4-rt-amd64

cyclictest -D10m -m -S -p 95 -i200 -h400

CPU1

CPU2

CPU3

CPU4

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Oliveira, Casini, Oliveira & Cucinotta papers :

model the IRQs, NMIs, thread synchronization mechanisms
into an automata

model stable between Linux versions (contrary to a model
entirely generated from traces)

able to �nd some linux code errors

apply in to get a model of the Linux+PREEMPT_RT patches
latency

⇒ not just the latency but root causes of the latency

⇒ ∼ Oliveira 2020 PhD thesis

automata compiled as a kernel module

⇒ new tracing infrastructure to understand the root causes of
this latency

⇒ alternative to cyclictest and kernel ftrace, user-space
trace-cmd and graphic interface kernelshark

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



2 ) Model of IRQs, NMIs and thread synchronization mechanisms

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Journal of Systems Architecture Volume 107, August 2020, 101729

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Synchronization mechanisms between :

IRQs (Interrupt ReQuests)

NMIs (Non Maskable Interrupts) = cannot ignore interrupts =
hw errors, parity/ECC errors, system

thread scheduling, context switch, . . .

locking : mutex, rwlocks, semaphores

Model with an automata G = (X ,E ,F , Γ, x0,Xm) :

X �nite set of states

E �nite set of events

F : X × E → X transition function

Γ(x) set of events e such that F (x , e) is de�ned in state x

x0 initial state

Xm set of �nal states

On all the interesting Linux mechanisms ?
Modular approach relying on automata theory :

generators, speci�cations, parallel composition

computed automatically thanks to a dedicated software
Supremica IDE

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Two generators or sub-automatas :

For a model of Linux synchronization mechanisms, this will be the
minimal operations in kernel synchronization.
Parallel composition or synchronous composition of two generators
G1 = (X1,E1, f 1, Γ1, x01,Xm1) G2 = (X2,E2, f 2, Γ2, x02,Xm2)
introduces the notion of private events and common events

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Speci�cations between generators are also implemented as an
automata.

For a model of Linux synchronization mechanisms, this will be for
example the necessary conditions to call the scheduler.
And Supremica IDE computes the �nal automaton

veri�es there is no dead-lock

�nal automata deterministic (only 1 transition to next step)

⇒ and Linux PREEMPT_RT too if the model is correct

Is the model really modeling the Linux kernel ?

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



The PREEMPT RT task model has:

12 generators, 33 speci�cations, 9017 states, 23103 transitions

deterministic automata

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



3 ) Model the latency bound

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Proceedings 32nd Euromicro Conference on Real-time Systems
(ECRTS 2020)

Idea : taking a subset of the model (9/12 generators, 14/33
speci�cations) and perform a case analysis to model the latency

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Thread scheduling latency is actual start F (after context switch) -
expected activation of highest priority A :

Model divided in two parts :

blocking/scheduling

interference from IRQ/NMI

INMI (L) and I IRQ(L) can be estimated from experiments and tests
LIF is the context switch and priority inversion blocking ⇒ try to
�nd a bound

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Mutually case exclusive analysis :

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



4 ) Conclusion

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency



PREEMPT_RT patches :

several advantages on other Linux real-time approches

soon in main git repository (2021?)

some optimizations already merged

Model with the automata approach :

12 generators, 33 speci�cations

⇒ model tractable

⇒ model stable between versions

⇒ can help to �nd bugs

claims that Linux+patches is deterministic and the scheduling
latency is bounded

Details not covered in this presentation that are worth to look at :

extension of the perf tool and automata compiled insided a
kernel module

comparison with cyclictest and ftrace

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency


	Real-Time
	Definition ?
	Applications ?
	Approaches with Linux ?
	PREEMPT_RT patches
	rt-tests suite and cyclictest

	Model of IRQs, NMIs and thread synchronization mechanisms
	Model the latency bound
	Conclusion

