Real-time Linux Scheduling Latency

after S.Rostedt, D.B. Oliveira, D. Casini, R.Oliveira,
T.Cucinotta

March 2021

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

@ Real-Time
@ Definition 7
@ Applications 7
@ Approaches with Linux 7
e PREEMPT _RT patches
o rt-tests suite and cyclictest

9 Model of IRQs, NMIs and thread synchronization mechanisms
© Model the latency bound

@ Conclusion

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

1) Real-Time

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Real-Time (RT) :
@ is about timing behavior not performance
@ deterministic/predictable scheduling

~ opposite of “batch work” on a server (think of a build server
where performance is about long-run rather than reactivity)

= timing response guarantees/bounding = safety bound
= predict the worst case
With Linux 7 :
e understanding timing behavior of linux
@ priority-base scheduling : high priority needs to be able to
preempt low priority
= faster in worst case scenarios but slower in the average
scenarios (otherwise this would be the default kernel)

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Applications :
@ robotics
@ stock exchange

e music studio recording (no “glitches” with jack low-latency
audio server)
e death or life devices ?
= NO ! Linux kernel too complex for formal methods 7

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Two approaches with the Linux kernel :

@ dual-kernel approach : RTAI, RTLinux, Xenomai Cobalt,
Xenomai Mercure
= Linux becomes a task alongside high-priority RT tasks
= lots of work : support new architecture, implement specific
tools/libraries (libc)
= bad scaling, (wo)man power problem
@ in-kernel approach
= maximize preemptible code sections = allow scheduling almost
everywhere
= take advantage of all the tools/optimizations/industrial
support. ..
= Linux too big for < 1$ chip ?
= try to keep up-to-date with mainline kernel
= 2021 : try to merge the patches in mainline kernel

= both Linux-approaches are ~15/20 years old

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Standard Linux preemption model configuration

PREEMPT _NONE, default = PREEMPT _VOLUNTARY
PREEMPT :

Preemption Model
Use the arrow keys to navigate this window or press tl
hotkey of the item you wish to select followed by e space
BAR>. Press <?> for additional information about

@
) ve\un(ary Kernel Prezmnuen wzskto)
() Preemptible Kernel (Low-Latency neskwp»D

< vetp >

With patches (new PREEMPT _RT)

Preemption Model
se the arrow keys to navigate this window or pres:
BAl

s
hotkey of the item you wish to select followed by tnz <SPACE
R>. Press <?> for additional information about

() No Forced Preemption (Server)
() Voluntary Kernel Preemption (Desktop)
() Preemptible Kernel (Low-Latency Desktop)

[F vty Preenprible Kernel (Real-Tine)

< Help >

Debian binary :

linux-image-amd64 ~~ linux-image-rt-amd64
Rostedt Oliveira Casini Oliveira Cucinotta

Real-time Linux Scheduling Latency

Make preemption enabled almost everywhere :

4

Select this if you are building a ke
require real-tine guarantees.

Symbol: PREEMPT RT [=y]

spinlocks ~~ raw__spinlock + sleeping spinlocks (= rt mutex)
threaded interrupt handler

priority inheritance to avoid priority inversion = when a high
priority is blocked because of some task of lower priority

others hacks already merged in mainline kernel
HUGE collection of patches

80% already mainlined (timers, interrupt handlers,tracing
infrastructure. . .)

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Normal interrupt preempts the task and executes the handler
function :

request iraunsigned nt g, _handler_t handler,unsigned ong flags,
t char *name, void *dev)

handler
i

High Priority
Task

Threaded interrupt schedules the thread fn function (top/bottom
half approach) :

request threaded_Irgunsioned nt s rq_hancler_t handier.
handler_t thread_fn,
unsigned 167 flags, const char “narme, void *dev)

handler
i schece

v
High Priority
Task thread_fn

Forced threaded interrupts just acknowledges the device (< 1 us)

equest. threaded_Irafunsigned nt i, ira_hancier_t handle,
_handler_t thread fn,
unsigned kg flags, const char *name, void “dev)

Inlerrupl
scnedde schedue

= merged in mainline since 2009
= all interrupts as threads threadirgs in mainline since 2011

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Priority inversion :

blocked

Iy

c
Priority inheritance :
A
,ox
[

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Most of the spinlock are transformed in rt-mutexes. The others are
now called raw _spinlocks.

v
handler I

_ DEADLOCK!

There are in fact needed now with the threaded IRQs !

handler
aaaaaaaa

. ke ook ‘aquired lock
v Y v

schede

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Usual way to tests real-time kernel behavior is to use the rt-tests
suite :

@ timer latency
@ signal latency
e functionning of priority-inheritance mutexes

° ...

The main program is cyclictest :
@ -p,--prio=PRI0 of first thread (default 80)
@ -i,--interval=INTV of first thread (default 1000us)
@ -1,--loops=LO0PS of first thread (default 0=endless)
@ -D,--duration=TIME
@ -t,--threads=NUM (default 1,empty means #CPU)
@ -m,--mlockall lock current and future memory alloc
@ -a,--affinity=PROC-SET
@ -S,--smp = -t -a
@ -h,--histogram=US max latency tracked

= cyclictest -D6h -m -S -p95 -1200 -h400

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

cyclictest -D6h -m -S -p 95 -i200 -h400

— CPU1
— CPU2
107 - — CPU3

— CPU4

w0

5}

=

g

5 1071

=)

<

b 5.10.0-4-amd64

<

3

g 103

s}

£

=1

Z

101.

0 50 100 150 200 250 300 350 400
Latency in us, max 647 us

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

cyclictest -D6h -m -S -p 95 -i200 -h400

— CPUI
— CPU2
107 — CPU3
— CPU4
g |
F
§ 10° A
=)
<
b 5.10.0-4-amd64
<
3
g 10% 1
s}
£
=1
Z
101 B

0 50 100 150 200 250 300 350 400
Latency in ps, max 2084 us

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

cyclictest -D6h -m -S -p 95 -i200 -h400

— CPU1
) — CPU2
107 1 — CPU3
— CPU4
8
!
2 10° -
2]
=)
<
b 5.10.0-4-1t-amd64
<
3
g 103 4
£
=}
Z
101 B

0 50 100 150 200 250 300 350 400
Latency in us, max 38 us

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

cyclictest -D6h -m -S -p 95 -i200 -h400

— CPU1
— CPU2
107 - — CPU3
— CPU4
£
=N
g
g 10° 1
=)
<
b 5.10.0-4-1t-amd64
<
3
Z 103
°
£
=}
Z
101.
0 50 100 150 200 250 300 350 400

Latency in us, max 35 us

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

cyclictest -D10m -m -S -p 95 -i200 -h400

— CPUL
106 — CPU2
— CPU3
— CPU4
105-
w0
5}
=N
g
& 107 5
=)
<
b 5.10.0-4-amd64
2 10
§ 102 4
Z
101-
103 L ||,|I | —]
200

0 50 100 150 250 300 350 400
Latency in us, max 343 us

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

cyclictest -D10m -m -S -p 95 -i200 -h400

— CPUI
106 4 — CPU2
— CPU3
5 — CPU4
10° 4 4
ki
3
3 10* 4
=)
<
b 5.10.0-4-1t-amd64
= 10% 4
3
B
g 102+
Z
101 .
100-
0 50 100 150 200 250 300 350 400

Latency in ps, max 3187 us

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Oliveira, Casini, Oliveira & Cucinotta papers :

model the IRQs, NMls, thread synchronization mechanisms
into an automata

model stable between Linux versions (contrary to a model
entirely generated from traces)

able to find some linux code errors

@ apply in to get a model of the Linux+PREEMPT _RT patches

e 4 ¥

Y

latency

not just the latency but root causes of the latency
~ Oliveira 2020 PhD thesis

automata compiled as a kernel module

new tracing infrastructure to understand the root causes of
this latency

alternative to cyclictest and kernel ftrace, user-space
trace-cmd and graphic interface kernelshark

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

2) Model of IRQs, NMls and thread synchronization mechanisms

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Journal of Systems Architecture Volume 107, August 2020, 101729

A Thread Synchronization Model for the PREEMPT_RT Linux
Kernel

Daniel B. de Oliveira®*c, Rémulo S. de Oliveira®, Tommaso Cucinotta®

“RHEL Platform/Real-time Team, Red Hat, Inc., Pisa, Italy.
Department of Systems Automation, UFSC, Floriandpolis, Brazil.

CRETIS Lab, Scuola Superiore Sant’Anna, Pisa, Italy.

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduli

Synchronization mechanisms between :
o IRQs (Interrupt ReQuests)
e NMIls (Non Maskable Interrupts) = cannot ignore interrupts =
hw errors, parity/ECC errors, system
o thread scheduling, context switch, ...
@ locking : mutex, rwlocks, semaphores
Model with an automata G = (X, E, F, I, x0, Xm) :
e X finite set of states
@ E finite set of events
@ F: X x E — X transition function
@ [(x) set of events e such that F(x,e) is defined in state x
@ xg initial state
o X, set of final states
On all the interesting Linux mechanisms 7
Modular approach relying on automata theory :
@ generators, specifications, parallel composition
o computed automatically thanks to a dedicated software
Supremica IDE

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Two generators or sub-automatas :

open

of

close | opened |
\

write / \

read 7 veitng)
/

For a model of Linux synchronization mechanisms, this will be the
minimal operations in kernel synchronization.

Parallel composition or synchronous composition of two generators
G1 = (X1,E1,f1,T1,x01, Xml) G2 = (X2, E2, £2,T2, x02, Xm2)
introduces the notion of private events and common events

Gy Il Ga = Ac(Xy X X2, Fy U Fa, fuya. Py, (ror.702), Kot X Xon2)

x26)) ife€ly(
if e

write

- waiting.opene ose
open | ready.opened | pea aiting.opened | _cle

close e

! ready.closed = write

- waiting.closed
read

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Specifications between generators are also implemented as an
automata.

write
close read

O =OROSE O

For a model of Linux synchronization mechanisms, this will be for
example the necessary conditions to call the scheduler.
And Supremica IDE computes the final automaton

o verifies there is no dead-lock
o final automata deterministic (only 1 transition to next step)
= and Linux PREEMPT _RT too if the model is correct

Is the model really modeling the Linux kernel 7

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Kernel event

Automaton event

Description

hw_local irqdisable

Begin IRQ handler

hw local irq_enable

Return IRQ handler

Tocal irq_disable

preemptirg:irq disable

Mask TRQs

Tocal irq_enable

preemptirqlocal-irq_enable

Tnmask IRQs

ni_entry

irq_vectors:nmi

Begin NMI handler

nimi_exit

irq_vectors:nmi

Return NMI Handler

Kernel event

A event

Description

preempt_disable

precmptirg:preempt disable

Disable preemption

preempt_enable

preemptirg:preemptenable

Enable preemption

preempt_disable_sched

preempt_cnable_sched

preemptirg: preempt disable

preemptirq:preempt enable

Disable preemption to call the scheduler
Enables preemption returning from the
scheduler

schedule_entry

sched:sched_entry

Begin of the scheduler

schedule_exit

sched:sched _exit

Return of the scheduler

sched need resched

sched:set_need_resched

Set need resched

sched waking

sched:sched waking

Activation of a thread

ched set_state_runnable

set_state

Thread is runnable

sched_set_state slecpable

et_state

Thread can go fo sleepable

sched_switch.in

sched:sched switch

Switch in of the thread under analysis

sched switch_suspend

sched:sched switch

Switch out due to a suspension of the
thread under analysis

sched_switch_preempt

sched:sched switch

Switch out due to a preemption of the
thread under anal

sched switch_blocking

sched:sched switch

s
Switch out due to a blocking of the thread
under analysis

sched_switch-in-o

sched:sched switch

Switch in of another thread

sched_switch_out.o

sched:sched switch

Switch out of another thread

Kernel event

A event

Description

mutex lock

lock:rt_mutex lock

Requested a RT Mutex

mutex lock:rt_mutex_block Blocked in a RT Mutex
mutex_ac lock:rt_mutex_acquired cquired a RT Mutex
mutex.abandon lock:rt.mutex. Abandoned the request of a RT Mutex

write_lock

lock:rwlock_lock

Requested a R/W Lock or Sem as writer

write_blocked

lock:rwlock_block

Blocked in a R/W Lock or Sem as writer

write_acquired

lock:rwlock acqunred

A(q\uml s R/W Lock or Sem as writer

write_abandon

lock:rwl

loned a R/W Lock or Sem as writer

read lock

lock:rwlock_lock

Requested a R/W Lock or Sem as reader

read.blocked

lock:rwlock-block

Blocked in a R/W Lock or Sem as reader

read_acquired

lockirwlock_acquired

Acquired a R/W Lock or Sem as reader

read_abandon

lock:rwlock_abandon

Abandon a R/W Lock or Sem as reader

Oliveira Cucinotta

me Linux Schedulin

Name States Events Transitions
Toopable or runnable 3

atexdt switch
ntext switch other thread

2
2
T
7 Proompt disable 3
G07 TRQ Masking 2
TRQ handling 7
G09 NMT 2
G10 Mutex 3
Write Tock. 3
7 Read lock 3
01 Sched tn after waken 2
502 Reschod and wakoup sufficoncy 3
507 Scheduler with preempt disable 2
507 Scheduler does't enable preemption 2
505 Scheduler with interrupt enabled 2
S06 Switch out. Uher 2
507 Switch with precmpi/ Irq disebled 3
SO8 Switch while scheduling 2
509 Sehedule aiways switch 3 [[
2 3
3
2
2
2
3
5
3
3
3
1
1

S10 Preempt disable to sched

S11 No wakeup right before switch

S12 IRQ context disable events

S13 NMI blocks all events

S14 Set slocpable while running

S15 Don't set runnable when schoduling,
S16 Scheduling contoxt apcrations
ST71RQ disabled

S18 Schedule necessary and sufficient
S79 Nood resched forcos scheduling

20 Lack while run:
T Lock while precmptive

Tock while interruptible

52 No suspension in lock algorithms

10 1
527 Sched blocking 1 blocks 0 20
525 Noed resched blocks lock ops 15 7
526 Lock either road or wrile 6 6
527 Mutex doosn't uso rw Tock T T
28 RW lock does not schied unless block i} 22
729 Mutex does not sched unless block 7 G
i Lm«l»k IRQ in sched implies switch 5 6 10
eed resched preempts unless sched 3 5 2
2 Uou ot suspend in mutex 3 5 11
535 Does ot suspend i v Tock 3 s 16

Model 9017 31 20103

The PREEMPT RT task model has:
@ 12 generators, 33 specifications, 9017 states, 23103 transitions

@ deterministic automata

Rostedt Oliv eira Cucinotta

3) Model the latency bound

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Proceedings 32nd Euromicro Conference on Real-time Systems
(ECRTS 2020)

Demystifying the Real-Time Linux Scheduling
Latency

Daniel Bristot de Oliveira
Red Hat, Ttaly
bristot@redhat.com

Daniel Casini
Scuola Superiore Sant’Anna, Italy

daniel.casini@santannapisa.it
Roémulo Silva de Oliveira
Universidade Federal de Santa Catarina, Brazil

romulo.deoliveira@ufsc.br

Tommaso Cucinotta
Scuola Superiore Sant’Anna, Italy
tommaso.cucinotta@santannapisa.it

Idea : taking a subset of the model (9/12 generators, 14/33
specifications) and perform a case analysis to model the latency

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Thread scheduling latency is actual start F (after context switch) -
expected activation of highest priority A :

» Definition 1 (Thread Scheduling Latency). The scheduling latency experienced by an
arbitrary thread 7,/"" € T'™" is the longest time elapsed between the time A in which any job
of """ becomes ready and with the highest priority, and the time F in which the scheduler

returns and allows 7" to execute its code, in any possible schedule in which 7" is not

preempted by any other thread in the interval [A, F.

Model divided in two parts :
@ blocking/scheduling
o interference from IRQ/NMI

L =L + P"™(L) + I'"™%(L).
INMI(L) and I'RQ(L) can be estimated from experiments and tests

L'F is the context switch and priority inversion blocking = try to
find a bound

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

EV1 The necessary conditions to call the scheduler need to be fulfilled: IRQs are enabled,
and preemption is disabled to call the scheduler. It follows from rule R5 and R6;

EV2 The scheduler is called. It follows from R12;

EV3 In the scheduler code, IRQs are disabled to perform a context switch. It follows from
rule RS;

EV4 The context switch occurs. It follows from rule R13 and R14;

EV5 Interrupts are enabled by the scheduler. It follows from R5;

EV6 The scheduler returns;

EV7 The preemption is enabled, returning the thread its own execution flow.

Mutually case exclusive analysis :

i-a if RHP; occurs between events EV1 and EV2, i.e., after that preemption has been disabled
to call the scheduler and before the actual scheduler call (black in Figure 21);

i-b if RHP; occurs in the scheduler between EV2 and EV3, i.e., after that the scheduler has
already been called and before interrupts have been disabled to cause the context switch
(pink in Figure 21);

i-c if RHP; occurs in the scheduler between EV3 and EV7, i.e., after interrupts have already
been masked in the scheduler code and when the scheduler returns (brown in Figure 21);

In case (ii), RHP; occurred when the current thread 7" € I'[{'" is not in the scheduler

execution flow. Based on the automaton of Figure 21, two sub-cases are further differentiated:

ii-a when RHP; is caused by an IRQ, and the currently executing thread may delay RHP; only
by disabling interruptions (green in Figure 21).

ii-b otherwise (blue in Figure 21).

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

Param. | Length of the longest interval

Dpsp in which preemptions are disabled to schedule.

Dpalg in which the system is in state pe_ie of Figure 21.

Dpoip in which the preemption is disabled to postpone the scheduler or IRQs are disabled.
Dst between two consecutive occurrences of EV3 and EV7.

[] thread [] Scheduling(Thread) [] Hard iR [l NMi Preemptiondisabled R IRQ disabled

| I I INMI(L) I |

| e I Il
|F

Al Dpoid | Dpsd

Context switch—> EV4

Figure 22 Reference timeline.
IF
L™ <max(Dst, Dpoip) + Dpare + Dpsp,

L = max(Dst, Dporp) + Dpare + Dpsp + I™(L) + I'"%(L)

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

4) Conclusion

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

PREEMPT _RT patches :
@ several advantages on other Linux real-time approches
@ soon in main git repository (20217)
@ some optimizations already merged
Model with the automata approach :
@ 12 generators, 33 specifications
= model tractable
= model stable between versions
= can help to find bugs

@ claims that Linux+patches is deterministic and the scheduling
latency is bounded

Details not covered in this presentation that are worth to look at :

@ extension of the perf tool and automata compiled insided a
kernel module

@ comparison with cyclictest and ftrace

Rostedt Oliveira Casini Oliveira Cucinotta Real-time Linux Scheduling Latency

	Real-Time
	Definition ?
	Applications ?
	Approaches with Linux ?
	PREEMPT_RT patches
	rt-tests suite and cyclictest

	Model of IRQs, NMIs and thread synchronization mechanisms
	Model the latency bound
	Conclusion

