
Real-time Linux at LPC2021 : stalld vs

NOHZ_FULL

September 2021

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

1 Real-Time, preemption and latencies in Linux

2 Linux scheduler

3 RT task + non-RT tasks

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

1) Real-Time, preemption and latencies in Linux

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

Real-Time (RT) :

⇒ timing response guarantees, bound on worst case, ...

Levels of preemption in the Linux kernel :

latency-throughput tradeo� : maximize throughput !=
minimize scheduling latencies

⇒ faster in worst case scenarios but slower in the average
scenarios

PREEMPT_RT > PREEMPT > PREEMPT_VOLUNTARY
(debian default) > PREEMPT_NONE

Linux PREEMPT_RT patches :

spinlocks ⇝ raw_spinlock + sleeping spinlocks (= rt mutex)

threaded interrupt handler

priority inheritance to avoid priority inversion

...

⇒ more work for the scheduler

⇒ almost merged ! after > 15 years of work

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

Latency :

:= Tactual start after context switch − Texpected activation of highest
priority task

= function of

⇒ IRQs (Interrupt ReQuests)
⇒ NMIs (Non Maskable Interrupts)
⇒ thread scheduling and locking mechanisms

So if more sections of code (as IRQ handlers) have preemption
enabled and get scheduled, priority task can start earlier and
latencies decrease...

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

0 50 100 150 200 250 300 350 400

Latency in µs, max 2084 µs

101

103

105

107

N
u

m
b

er
of

la
te

n
cy

sa
m

p
le

s

5.10.0-4-amd64

cyclictest -D6h -m -S -p 95 -i200 -h400

CPU1

CPU2

CPU3

CPU4

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

0 50 100 150 200 250 300 350 400

Latency in µs, max 35 µs

101

103

105

107

N
u

m
b

er
of

la
te

n
cy

sa
m

p
le

s

5.10.0-4-rt-amd64

cyclictest -D6h -m -S -p 95 -i200 -h400

CPU1

CPU2

CPU3

CPU4

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

2) Linux scheduler

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

Linux multi-core scheduler =
distributed mono-core + load-balancing :

scheduling policies within scheduling classes

scheduling with higher priority �rst

tasks can migrate between CPUs, classes, policies

runqueue per core :
⇒ Stop : no policy

stop_machine, migration, RCU, ftrace . . .

⇒ Deadline :
SCHED_DEADLINE

⇒ Realtime : prio ∈ [0,99]
SCHED_FIFO SCHED_RR

⇒ Cfs : prio = 120 + nice ∈ [100,139] ⇝
weight ⇝ vruntime
SCHED_NORMAL SCHED_BATCH
SCHED_IDLE (>139)

⇒ Idle : no policy
swapper, low-power state

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

3) RT task + non-RT tasks

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

Old-fashion static deployment :

1 Linux parameters in Grub con�g (reboot)
BOOT_IMAGE=/boot/vmlinuz-5.15.0-rc2+ root=UUID=..

ro isolcpus=3 quiet

2 sched_setaffinity system call

taskset -c 3 chrt -f 78 ./my-critical-RT-app
numactl ...

Modern days dynamic deployment : Cgroups (Docker, Kubernetes,
) :

echo 0 > cpuset.sched_load_balance

cpuset.cpus/cpu_exclusive

Performance when RT + non-RT ?

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

How to get performance back ?

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

How to get performance back ?

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

taskset ⇒ almost Realtime policy performance

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

OS noise that can cause a RT-task to miss its timing deadline :

IRQs, SMIs

drivers

resource contention

⇒ SCHED_FIFO/RR RT-task . . . but

⇒ starvation of per-cpu kworker on the isolated cpus contending
with the RT-task

⇒ RT-throttling not sufficient for other RT-tasks of lower priority
echo 2000000 > /proc/sys/kernel/sched_rt_period_us

echo 1000000 > /proc/sys/kernel/sched_rt_runtime_us

stalld : https://github.com/bristot/stalld

1 detecting starving threads

2 starting on housekeeping cpu a pthread for each isolated cpus

3 boosting temporarly thanks to SCHED_DEADLINE (or
SCHED_FIFO)

4 10 µs every s to give time to starving thread

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

3GPP speci�cation for 5G : Radio Tower ↔ Data-center maximum
delay

⇒ Tx + processing + ack < 3µs ⇒ cyclictest < 10 µs

Telco people using user-space DPDK polling-mode NIC drivers

⇒ SCHED_FIFO prio=90 on isolated cpus

and basic services

⇒ SCHED_NORMAL on �housekeeping� cpus (sshd, dockerd,
. . .)

Linux kernel starts both non-RT and RT kthreads on every CPUs :

SCHED_FIFO prio = 1 on isolated CPUs get starved ⇒
cascading lockups

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

Limitations of stalld :

scalability : pthread for every isolated cpu potentially starved

running on housekeeping CPUs competing with the
housekeeping tasks can get starved or can cause starving

⇒ hard to use

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

Sharan Turlapati (VMware) Srivatsa Bhat (MIT) come with an
in-kernel solution :

per-cpu starvation monitor list

hrtimer for boost_duration_time and
starvation_duration_time (user con�guration)

boost or deboost sched_setattr in hardirq context

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

Questions and reactions 2020-2021 :

is the user-space stalld a debugging tool ?

is the kernel stall monitor a ugly hack ?

is adding priority to a process, a user-space decision ?

single user-space thread is less overhead than kernel per-cpu
solution anyway ?

Long-term solution instead of a workaround :

⇒ �x NOHZ_FULL isolation mode in the subsystems

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

` How many man-years have been spent on developping

stalld and stalld-ng instead of looking at the underlying

problems and �x that ? I mean it's not rocket science.

Most of the pain points are knowed.There are patches actu-

ally �oating around, they are shitty patches but they could

be polished up. So instead we waist time on things that

are completely bonkers.' Thomas Gleixner

Real-time Linux at LPC2021 : stalld vs NOHZ_FULL

	Real-Time, preemption and latencies in Linux
	Linux scheduler
	RT task + non-RT tasks

